

A Grade Ahead's rigorous, year-round math enrichment program is designed to challenge your child to a higher academic standard. Our monthly curriculum includes mathematical concepts that your child will see in school. Your child will learn and apply math concepts to real-world situations through word problems and develop strong critical thinking and analytical skills.

Each week will have an in-depth lesson (which we call Examples), homework, and answers. In these next pages, we offer a closer look at what our Examples, homework, and answers offer as well as a specific example of each.

|                      | Examples - Geometry [Grades 9-10]                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                      | Æ                                                                                                                                                                                                                                                 | Example: $m \overline{AB} = m \overline{DE}$ ?<br>$m \overline{AB} + 6 = 8$<br>$m \overline{CD} + 6 = 8$<br>$m \overline{CD} = 2$<br>$m \overline{DE} = 2$<br>$m \overline{CD} = m \overline{DE}$ | m CD, and m DE = 2. If m AB + 6 = 8,then, what how does m CD relate to<br>Substitution PTY<br>Subtraction PTY<br>Transitive PTY |  |  |  |
|                      | The Refle                                                                                                                                                                                                                                         | xive Property                                                                                                                                                                                     |                                                                                                                                 |  |  |  |
|                      | The reflexive property allows us to state that something is equal to itself. This property is most commonly<br>used when 2 objects share a side, or a side needs to be referenced at a later point.                                               |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |
|                      |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |
|                      | Since $\Delta$ ABD and $\Delta$ ACD both share side AD and we are able to state that AD $\approx$ AD since anything is congruent to itself. Therefore, by the reflexive property, $\Delta$ ABD and $\Delta$ ACD have at least one congruent side. |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |
| netric Property<br>2 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |
|                      | that two items are equal to each other exercise                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                 |  |  |  |

## Examples

To illustrate the topic, examples are provided to you and your child. These examples help demonstrate how to solve the problem or figure out the answer.



Lesson pages are titled "Examples – Geometry [Grades 9–10]," answer pages are titled "Answers – Geometry [Grades 9–10]," and homework pages are simply titled "Geometry [Grades 9–10]."



## Homework

Each week, four days of homework are given to apply concepts from that week's lesson and reinforce the topic.



### Answers

Answers are provided to check your child's homework. Enter the scores into the Parent Portal to track progress and note which areas may need more work.

# Geometry Terms, Algebraic Properties, and Addition Postulates



**Teaching Tip:** Students should be familiar with lines, planes, and angles. Sections A and B (with the exception of constructions) can be reviewed quickly to allow for more focus on Sections C and D. Algebraic Properties can be easily referred back to during homework.

#### A. Geometry Introduction and Term Review

Geometry helps us understand the math behind what surrounds us. We use geometry to discover more about and make comparisons between two- and threedimensional shapes, planes, lines, and points, and we use that information to make even more discoveries.



In geometry, students will study facts that have already been proven true as well as the methods used to prove them. This process relies heavily on definitions, interpreting figures, and eliminating assumptions. One of the main rules of geometry is not to assume.

#### <u>Congruence</u>

When comparing two or more objects in geometry, we use the term **congruent** to describe objects that have the same size and shape but are still separate objects from each other. We use the symbol  $\cong$  to indicate that objects are congruent. Tick marks indicate congruent sides, and curves mark congruent

angles:

<u>Review Terms</u>

Day 1 Q1-8

| Term            | Definition                                                                                           | Example Image | Name(s)                                    |
|-----------------|------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------|
| Point           | A place in space that can be described by location with no length or width                           | • A           | Capital Letter<br>Ex. Point A              |
| Line            | A straight path made of infinite<br>points with no endpoints: It goes<br>forever in both directions. | A B X         | Line x<br>Line AB<br>AB                    |
| Line<br>Segment | A part of a line consisting of two<br>endpoints and all of the points<br>between them                | A B C D       | Line segment<br>AD<br>AD                   |
| Ray             | A part of a line with one endpoint<br>and extending indefinitely in the<br>other direction           | B C D         | Name by<br>endpoint first.<br>Ray BD<br>⊟D |
| Plane           | A flat surface that extends in two<br>directions indefinitely with no<br>height or thickness         |               | Plane ABCD<br>Plane P                      |

#### Week: 1

| Term               | Definition                                                                 | Example Image | Name(s)                                                                |
|--------------------|----------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|
| Angle              | Two rays with the same<br>endpoint (vertex):<br>Each ray is called a side. |               | 1 angle:<br>∠ 1,<br>∠ B, or<br>∠ ABC                                   |
| Adjacent<br>Angles | Two angles that share a<br>vertex and have a common<br>side                | X 2 M<br>3 N  | 3 different<br>angles:<br>∠ X or ∠ LXN<br>∠ 2 or ∠ LXM<br>∠ 3 or ∠ MXN |

#### **B.** Lines and Planes

Euclidean Space

Day 1 Q1-8

Euclidean Space is the set of all points in three dimensions (x, y, z) or the points that we can see. All topics in this class will be based on this concept of Euclidean Geometry unless otherwise stated.

| Term Definition          |                                                                                                                                              | Example Images                                                                                                                             |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Coplanar Points          | Points that lie in the same<br>plane                                                                                                         | Coplanar points Non-coplanar points                                                                                                        |  |  |
| Collinear Points         | Points that lie in the same<br>line (collinear points are also<br>coplanar.)                                                                 | Collinear points Non-collinear points                                                                                                      |  |  |
| Intersection             | When a line or plane meets,<br>cuts across, or overlaps<br>another line or plane                                                             | $\begin{array}{c} r \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                  |  |  |
| Congruent<br>Segments    | Line segments that are<br>equal in length ( $\overline{BC} \cong \overline{CD}$ ).<br>Tick marks are used to show<br>congruence in a figure. | $\begin{array}{c c} \bullet & \bullet & \bullet & \bullet \\ A & B & C & D \\ \hline \\ Line Segment BC \cong Line Segment CD \end{array}$ |  |  |
| Midpoint of a<br>Segment | Divides a segment into two<br>congruent segments                                                                                             | $ \begin{array}{c c} \bullet & \bullet & \bullet \\ A & B & C \\ \hline \overline{AB} \cong \overline{BC} \end{array} $                    |  |  |

#### Duplicating a Line Segment

Day 1 Q37

- 1. If a line segment is not provided, draw one using the straight edge.
- 2. Draw a second, longer line segment using the straight edge.
- 3. Next, place the metal or plastic point of the compass on one end of the line segment (the point should be the part that does not have a pencil).
- 4. Adjust the opening of the compass so that it is equal to the length of the line segment.
- 5. Without changing the spacing of the compass, place the metal or plastic point of the compass on the left end of the second line segment and draw a small curve across the line.
- Make a point where the curve crosses the line. The distance from the end point to the created point is the duplicate of the original line segment.



**Teaching Tip:** This construction and the one to follow can both be demonstrated on the board for students to see while students construct their own. Make sure they follow you at each step, to help them remember.

#### C. Bisectors

A bisector is a line, segment, ray, or plane that cuts another figure into two equal parts. The two most common types of bisectors are segment bisectors and angle bisectors (they are named for the figure that they bisect).



#### Perpendicular Bisector

A **perpendicular bisector** is a segment bisector that passes through the midpoint of a segment at a right angle (90°).In the figure to the right, line x

is a perpendicular bisector of BD ; therefore,  $BC \cong CD$  .





#### Constructing a Perpendicular Bisector for a Line Segment

- 1. If a line segment is not provided, draw one using the straight edge.
- 2. Next, place the metal or plastic point of the compass on one end of the line segment (the point should be the part that does not have a pencil).
- 3. Adjust the opening of the compass so that it is more than half of the line segment.
- 4. Rotate the compass to draw a small curve above and below the line segment.
- 5. Without changing the spacing of the compass, move it so that the point is resting on the opposite end of the line segment.
- 6. Rotate the compass to draw a small curve above and below the line segment (these curves should cross the curves drawn in step 4).
- 7. Connect the points where the curves cross using the straight edge.

#### D. Postulates & Properties

Postulates and properties have two purposes: they work as explanations to help learn the concepts, and they also work as justifications to help prove new concepts.

Students will be able to recognize new justifications by the dark box that they are written in (such as the box the "Segment Addition POST" is defined in below).

<u>Postulates</u>

Day 1 Q35 & 36

Postulates, also known as axioms, are statements that are accepted as true without needing proof. The abbreviation for a postulate is POST.  Teaching Tip: The Segment and Angle Addition Postulates can both be remembered by thinking about them as the parts added to make a whole and emphasizing that the name of each postulate summarizes its purpose.



B

**Example:** For the line segment given below,

write two equations that equal m AD using the Segment Addition Postulate.

$$A B C D$$

$$\overline{AB} + m\overline{BD} = m\overline{AD}$$

 $m\overline{AC} + m\overline{CD} = m\overline{AD}$ 



Note: Using **m** before an angle or segment indicates measure:

 $m \overline{AB}$  = measure of  $\overline{AB}$ m  $\angle ABC$  = measure of  $\angle ABC$ 

Use m when writing an equation with an equal sign, not a congruence sign:

 $m\overline{AB} = 7$ 

 $AB \cong 7 \ (\text{Note that some teachers} \\ \text{may not accept congruence sign with} \\ \text{a number, but in HS, it is accepted.} )$ 





**Example:** Solve for  $m \ge 1$  and  $m \ge 2$  given that the following is true:  $m \ge ABC = x + 45^{\circ}$ ;  $m \ge 1 = x + 5$ ;  $m \ge 2 = x - 2$ 

 $m \angle ABC = m \angle 1 + m \angle 2$ x + 45 = x + 5 + x - 2 x + 45 = 2x + 3 x = 42  $m \angle 1 = 42 + 5 = 47^{\circ}$ m  $\angle 2 = 42 - 2 = 40^{\circ}$  Angle Addition Postulate



Properties of Equality Day 1 Q16-26

|                            | ·                                                              |                                                                                                                                                                  |                       |
|----------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>Review Properties</b>   | Definition                                                     | Exan                                                                                                                                                             | nple                  |
| Addition Property          | If a = b, then, a + c = b +<br>c.                              | Solve for x:<br>x - 3 = 15<br>x - 3 + 3 = 15 + 3<br>x = 18                                                                                                       | Addition PTY          |
| Subtraction<br>Property    | If a = b, then, a – c = b –<br>c.                              | Solve for $m \angle A$ :<br>$m \angle A + m \angle B = 98^{\circ}$<br>$m \angle A + m \angle B - m \angle B = 98^{\circ} - m \angle A = 98^{\circ} - m \angle B$ | - ∠ B Subtraction PTY |
| Multiplication<br>Property | If a = b, then, ac = bc.                                       | Solve for x:<br>$\frac{x}{5} = 2$<br>$5 \times \frac{x}{5} = 2 \times 5$<br>x = 10                                                                               | Multiplication PTY    |
| Division Property          | If a = b and c $\neq$ 0, then,<br>$\frac{a}{c} = \frac{b}{c}.$ | Solve for a:<br>$a \times 12 = 48$<br>$a \times 12 \div 12 = 48 \div 12$<br>a = 4                                                                                | Division PTY          |
| Distributive<br>Property   | a(b + c) = ab + ac.                                            | 3(x + 2) = 3x + 6(3)(x) + (3)(2) = 3x + 63x + 6 = 3x + 6                                                                                                         | Distributive PTY      |

#### **The Substitution Property**

If a = x, and a + b = c, then, x + b = c.

The substitution property is similar to those of Addition, Subtraction, Multiplication, and Division, except it allows us to replace part of an original statement with an equivalent term and the statement will stay true.



**Example**:  $\overline{MAB} = \overline{MCD}$ . If  $\overline{MAB} + 6 = 8$ , then, what is  $\overline{MCD}$ ?



 $m \frac{AB}{CD} + 6 = 8$  $m \frac{CD}{CD} + 6 = 8$  $m \frac{CD}{CD} = 2$ 

Substitution PTY Subtraction PTY

#### The Transitive Property

If a = b, and b = c, then a = c.

The transitive property allows us to take a previously discovered fact and incorporate it to make a later connection. It is *always at least a 3-step process*.

#### Week: 1

 

 Example: m AB = m CD, and m DE = 2. If m AB + 6 = 8, then, what how does m CD relate to m DE?

 m AB + 6 = 8 m CD + 6 = 8 m CD = 2

 Substitution PTY m CD = 2

 Subtraction PTY m DE = 2 m CD = m DE

 Transitive PTY

The reflexive property allows us to state that something is equal to itself. This property is most commonly used when 2 objects share a side, or a side needs to be referenced at a later point.



**Example**: How can you prove that  $\triangle ABD$  and  $\triangle ACD$  have at least one congruent side?



Since  $\triangle ABD$  and  $\triangle ACD$  both share side AD and we are able to state that AD  $\cong$  AD since anything is congruent to itself. Therefore, by the reflexive property,  $\triangle ABD$  and  $\triangle ACD$  have at least one congruent side.

#### The Symmetric Property

If a = b, then b = a.

The symmetric property tells us that two items are equal to each other even when given in the opposite order. This is the property that allows us to flip an equation to put the variable on the left.



**Example**: Solve 2x + 5 = 3x - 4 for x.

2x + 5 = 3x - 4 5 = x - 4 9 = xx = 9

Subtraction Property Addition Property Symmetric Property



Note: Of these four new properties, the Substitution Property and Transitive Property will be most commonly used in high school geometry. It is important for students to learn the difference between the two in order to tell which is being applied in problems.

| te:                                    | Start Time:                     | End Time:                                               |  |  |
|----------------------------------------|---------------------------------|---------------------------------------------------------|--|--|
| u may use a calculator unless c        | herwise indicated. Figures are  | Score:/4<br>not drawn to scale.                         |  |  |
|                                        |                                 |                                                         |  |  |
| Match the image with the corre         | t term.                         |                                                         |  |  |
| A. B.                                  | С.                              | D.                                                      |  |  |
| • • · · · ·                            | •                               | •                                                       |  |  |
|                                        |                                 | •                                                       |  |  |
| E. / F.                                | ● G. ▲                          | H. •                                                    |  |  |
| •                                      | •                               | • •/                                                    |  |  |
| •                                      | •                               | •                                                       |  |  |
|                                        | •                               |                                                         |  |  |
| 1. Collinear Points                    | 2. Line Segmen                  | 2. Line Segment                                         |  |  |
| 3. Non-coplanar Points                 | 4. Point                        | <ol> <li>Point</li> <li>Non-collinear Points</li> </ol> |  |  |
| 5. Ray                                 | 6. Non-collinear                |                                                         |  |  |
| 7. Line                                | 8. Coplanar Poi                 | ints                                                    |  |  |
|                                        |                                 |                                                         |  |  |
| Use your knowledge of lines a          | d planes to answer the followin | ng questions.                                           |  |  |
| 9. How many points are necessa         | y to determine a line?          |                                                         |  |  |
| 10. How many points are needed         | to be non-collinear?            |                                                         |  |  |
| 11. How many points are necess         | ry to determine a plane?        |                                                         |  |  |
| E<br>/                                 | B C P                           | <b>7</b> <sup>•</sup> D                                 |  |  |
|                                        | • A                             |                                                         |  |  |
| 12. What is the name of the plan       | above?                          |                                                         |  |  |
| 13. List the points that are coplanar. |                                 |                                                         |  |  |
|                                        |                                 |                                                         |  |  |
| 14. List the points that are non-c     | planar with the given plane.    |                                                         |  |  |

| On each blank below, use your knowledge of the algebraic properties of equality to rewrite                                                                   |                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| the underlined portion of each statement so that it is true for the property given.                                                                          |                                                                                                                                                               |  |  |  |
|                                                                                                                                                              |                                                                                                                                                               |  |  |  |
| 17. By the <b>transitive property</b> , we know that if congruent to Line C, then <u>Line A is not cong</u>                                                  | By the <b>transitive property</b> , we know that if Line A is congruent to Line B, and Line B is congruent to Line C, then Line A is not congruent to Line C. |  |  |  |
| 18. By the <b>substitution property</b> , we know tha                                                                                                        | By the <b>substitution property</b> , we know that if $a = x$ , and $a + 9 = 21$ , then $x + 21 = 9$ .                                                        |  |  |  |
| 19. By the <b>distributive property</b> , we know that                                                                                                       | 9. By the <b>distributive property</b> , we know that if $6(x - 5) = 26$ , then $6x - 5 = 26$ .                                                               |  |  |  |
| 20. By the <b>reflexive property</b> , we know that if Triangle ABC and Triangle DBC share side $\overline{BC}$ , then $\overline{BC} \cong \overline{AC}$ . |                                                                                                                                                               |  |  |  |
|                                                                                                                                                              |                                                                                                                                                               |  |  |  |
| Solve for b. Then, indicate which property the property is being used to solve.                                                                              | e original equation is defining and which                                                                                                                     |  |  |  |
| 21-23. 19 – 16 = b – 16                                                                                                                                      | 24-26. 5(3) = 5b                                                                                                                                              |  |  |  |
|                                                                                                                                                              |                                                                                                                                                               |  |  |  |
| b =                                                                                                                                                          | b =                                                                                                                                                           |  |  |  |
| Defining:                                                                                                                                                    | Defining:                                                                                                                                                     |  |  |  |
| Solved by:                                                                                                                                                   | Solved by:                                                                                                                                                    |  |  |  |
| 27-29. $b + 34 = 27 + 34$<br>30-32. $\frac{7}{11} = \frac{b}{11}$                                                                                            |                                                                                                                                                               |  |  |  |
|                                                                                                                                                              |                                                                                                                                                               |  |  |  |
| b =                                                                                                                                                          | b =                                                                                                                                                           |  |  |  |
| Defining:                                                                                                                                                    | Defining:                                                                                                                                                     |  |  |  |
| Solved by:                                                                                                                                                   | Solved by:                                                                                                                                                    |  |  |  |



| Date:                                                                    | Sta:                                                                         | rt Time:                                                | End Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| You may use a calculator unle                                            | ss otherwise indica                                                          | ted. Figures are not                                    | Score:/49<br>drawn to scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Solve for the following using the segment and angle addition postulates. |                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| <pre></pre>                                                              | <u>e</u>  e                                                                  |                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                          | B (                                                                          |                                                         | D I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Let $mBD = 24$ , and $mAC = n$                                           | n CD . Solve for each                                                        | of the following.                                       | <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1. mBC =                                                                 | 2. m <del>AB</del> =                                                         |                                                         | 3. m CD =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Let m $\angle AED = 96 + x, m \angle B$                                  | BED = 3x, and m $\angle$ C                                                   | $ED = 48^{\circ}$ . Solve for each $e$                  | ach of the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 4. m ∠ BEC =                                                             | -                                                                            |                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 5. m ∠ BED =                                                             | _                                                                            | •                                                       | A B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 6. m ∠ AED =                                                             | _                                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 7. m ∠AEB =                                                              | -                                                                            |                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 8. m ∠AEC =                                                              | _                                                                            |                                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Fill in the blank with the pr                                            | etulate that tells vo                                                        | u that the equation (                                   | niven is true. If neither                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| postulate you have learned                                               | d works, write "none                                                         | e". Use the rhombus                                     | given.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 9                                                                        | $9y + y^2 - 10 = 180^\circ$                                                  | A                                                       | <u>x+6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 10                                                                       | _ 9y = 11y - 20                                                              |                                                         | / ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 11                                                                       | $\bar{\mathbf{x}} + \bar{\mathbf{x}} + \bar{\mathbf{x}} \cong \overline{BC}$ | x <sup>2</sup> (4y                                      | $(9y)^{\circ}$ (9y) (y <sup>2</sup> - 10) ( |  |  |  |
| 12.                                                                      | x + 6 = 4x - 3                                                               |                                                         | (11y-20)°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 13                                                                       | $-9y + 4y + 50 - 180^{\circ}$                                                |                                                         | $\searrow \neq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                          | _ 0 , 1 , 1 , 1 , 0 = 100                                                    | D                                                       | 4x-3 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 2                                                                        | ,<br>                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Draw and label each of the                                               | following on the pla                                                         | ane provided.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                          |                                                                              | 14. Draw a coplanar three points labeled                | line segment containing A, B, and C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                          |                                                                              | 15. Draw three collin<br>and F that are non-c<br>given. | ear points labeled D, E,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                          |                                                                              | 16. Draw three non-o<br>labeled G, H, and I.            | collinear, coplanar points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                          |                                                                              | 17. Draw three non-o<br>points labeled J, K, a          | collinear, non-coplanar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |



| Write the logical result and which property of e                                      | equality allows us to make each statement.                    |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| 34-35. If a = b and b = c, then a =                                                   | · · · · · · · · · · · · · · · · · · ·                         |  |  |
| 36-37. If b = 5 and 3 + b = c, then 3 +                                               | = c ;                                                         |  |  |
| 38-39. If a = b, then b =                                                             |                                                               |  |  |
|                                                                                       |                                                               |  |  |
| 40-41. AB =                                                                           | ;;                                                            |  |  |
| 42-43. Duplicate the segment below. Then, consegment using the steps we have learned. | struct a perpendicular bisector of the new                    |  |  |
| Fill in each blank with the property used in the final step shown.                    |                                                               |  |  |
| 44. $14x - 20 = 2(x - 4)$                                                             | 45. $7x - 10 = x - 4$                                         |  |  |
| $\frac{14x-20}{2} = \frac{2(x-4)}{2}$                                                 | 7x - x - 10 = x - x - 4                                       |  |  |
| Property:                                                                             | Property:                                                     |  |  |
| 46. $6x - 10 = -4$<br>6x - 10 + 10 = -4 + 10                                          | 47. $\frac{6x}{7} = 13$ $\frac{6x}{7} \times 7 = 13 \times 7$ |  |  |
| Property:                                                                             | Property:                                                     |  |  |
| 48. f(x) = 3(5x + 3), and x = 5:<br>f(5) = 3(5 × 5 + 3)                               | 49. $9x + 36 = 18x$<br>9(x + 4) = 18x                         |  |  |
| Property:                                                                             | Property:                                                     |  |  |

Week: 1 - Day 3

| Date:                                                                         | Start Time: End Time:                                                                                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Do not use a calculator unless other                                          | Score:/39<br>wise indicated. Figures are not drawn to scale.                                                          |  |  |  |  |  |
| Fill in the blank with the correct term.                                      |                                                                                                                       |  |  |  |  |  |
| 1. A(n)                                                                       | is a flat surface that extends in 2 directions.                                                                       |  |  |  |  |  |
| 2. A(n)<br>them.                                                              | consists of two endpoints and all of the points between                                                               |  |  |  |  |  |
| 3. A(n)                                                                       | is a place in space with no length or width.                                                                          |  |  |  |  |  |
| 4. A(n)                                                                       | is two rays with the same endpoint.                                                                                   |  |  |  |  |  |
| 5. A(n)                                                                       | is a straight path through at least two points.                                                                       |  |  |  |  |  |
| 6                                                                             | _ share a vertex and have a common side.                                                                              |  |  |  |  |  |
| 7. A(n)<br>direction.                                                         | has one endpoint extending indefinitely in the other                                                                  |  |  |  |  |  |
| Draw and label each of the follow                                             | ing on the plane provided.                                                                                            |  |  |  |  |  |
| x                                                                             | 8. Draw a coplanar line segment containing three points labeled A, B, and C on Plane X.                               |  |  |  |  |  |
|                                                                               | 9. Draw three collinear points labeled D, E, and F that are non-coplanar to the planes X and Y but pass through both. |  |  |  |  |  |
| Y                                                                             | 10. Draw three non-collinear, coplanar points labeled G, H, and I on Plane Y.                                         |  |  |  |  |  |
|                                                                               | 11. Draw three non-collinear, non-coplanar<br>points labeled J, K, and L on neither Plane X<br>nor Plane Y.           |  |  |  |  |  |
| Complete the example for each of                                              | f the following properties of equality                                                                                |  |  |  |  |  |
| 12. Symmetric Property                                                        | 13. Substitution Property                                                                                             |  |  |  |  |  |
| , so 45 = r                                                                   | $m \overline{BC}$ . $m \angle ABC = 15x$ , and $x = 2$ .                                                              |  |  |  |  |  |
|                                                                               | m∠ ABC =                                                                                                              |  |  |  |  |  |
| 14. Transitive Property                                                       | 15. Reflexive Property                                                                                                |  |  |  |  |  |
| If m $\angle 1 - m \angle 2 = 15^{\circ}$ , and 15°<br>then, = m $\angle 3$ . | =, 10 =                                                                                                               |  |  |  |  |  |
| <u> </u>                                                                      | ·/                                                                                                                    |  |  |  |  |  |

13

\_\_\_\_



### Week: 1 - Day 3

| 28-30.  mBC = x + 13                                                                    | Mathematical Step                                                       | Reasoning Used                                   |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|
| m CD = 3x - 21 $m BD = 60$                                                              | $m\overline{BC} + m\overline{CD} = m\overline{BD}$                      | Segment Addition POST                            |
| The figure                                                                              |                                                                         | Substitution PTY                                 |
| V z                                                                                     | 4x - 8 = 60                                                             | Simplify                                         |
| B C D                                                                                   | 4x = 68                                                                 |                                                  |
|                                                                                         |                                                                         | Division PTY                                     |
| 1-33. m $\overline{BC} = 8x - 2$                                                        | Mathematical Step                                                       | Reasoning Used                                   |
| $m\overline{BD} = 45$                                                                   | $\overline{mBC} + \overline{mCD} = \overline{mBD}$                      | Segment Addition POST                            |
| The figure                                                                              | 8x - 2 + 3x + 3 = 45                                                    |                                                  |
| v                                                                                       | 11x +1 = 45                                                             | Simplify                                         |
| B C D                                                                                   | 11x = 44                                                                |                                                  |
|                                                                                         | x = 4                                                                   |                                                  |
| 4-37. m $\overline{BC} = x + 3$<br>m $\overline{CD} = 3x - 9$                           | Mathematical Step                                                       | Reasoning Used                                   |
| $m\overline{BD} = 50$                                                                   | $m\overline{BC} + m\overline{CD} = m\overline{BD}$                      | Segment Addition POST                            |
| The figure                                                                              | x + 3 + 3x - 9 = 50                                                     |                                                  |
| Ťу                                                                                      |                                                                         | Simplify                                         |
|                                                                                         | 4x = 56                                                                 |                                                  |
| ¥                                                                                       |                                                                         | Division PTY                                     |
| 3-39. Duplicate the segment be<br>eps we have learned. Use a ru<br>gments for accuracy. | elow. Then, construct a perpendi<br>ller to check the length of the ori | cular bisector using the<br>ginal and duplicated |

| Week: 1 – Day 1 |                                                            |           |                                              |  |  |
|-----------------|------------------------------------------------------------|-----------|----------------------------------------------|--|--|
| 1)              | F                                                          | 2)        | A                                            |  |  |
| 3)              | Н                                                          | 4)        | С                                            |  |  |
| 5)              | В                                                          | 6)        | D                                            |  |  |
| 7)              | G                                                          | 8)        | E                                            |  |  |
| 9)              | 2                                                          | 10)       | 3                                            |  |  |
| 11)             | 3                                                          | 12)       | Plane P                                      |  |  |
| 13)             | B, C, and F                                                | 14)       | A, D, and E                                  |  |  |
| Answers to      | o question 15 may vary, but must be a flat surfa           | ace in th | ne room. An example is given.                |  |  |
| 15)             | The floor [A table, a wall, a book, or any other           | flat sur  | face in the room could also be correct.]     |  |  |
| 16)             | 7 = a                                                      |           |                                              |  |  |
| 17)             | Line A is congruent to Line C.                             |           |                                              |  |  |
| 18)             | x + 9 = 21                                                 |           |                                              |  |  |
| 19)             | 6x - 30 = 26  OR  6x - (6)(5) = 26                         |           |                                              |  |  |
| 20)             | $\overline{BC}\cong\overline{BC}$                          |           |                                              |  |  |
| 21)             | 19                                                         | 22)       | Subtraction PTY                              |  |  |
| 23)             | Addition PTY                                               | 24)       | 3                                            |  |  |
| 25)             | Multiplication PTY                                         | 26)       | Division PTY                                 |  |  |
| 27)             | 27                                                         | 28)       | Addition PTY                                 |  |  |
| 29)             | Subtraction PTY                                            | 30)       | 7                                            |  |  |
| 31)             | Division PTY                                               | 32)       | Multiplication PTY                           |  |  |
| 33)             | 5 [13 – 8 = 5]                                             | 34)       | 81° [43 + 38 = 81]                           |  |  |
| 35)             | $6\left[\frac{2}{3}(18) = 12; 18 - 12 = 6\right]$          |           |                                              |  |  |
| 36)             | 37° [2x + 5 + x – 3 = 122°; 3x + 2 = 122°; 3x =            | 120°; x   | x = 40°; ∠FEG = 40 <b>–</b> 3 = 37°]         |  |  |
| For questic     | ons 37-38, the drawings are not shown to scale<br>re shown | , but the | e marks needed to complete the constructions |  |  |
| 37)             |                                                            | 38)       | *                                            |  |  |
|                 |                                                            | ,         |                                              |  |  |
|                 | /                                                          |           | ¥                                            |  |  |
|                 |                                                            |           | -                                            |  |  |

39) Error: Step 3 Correct:





Answers\_GRDGEO\_W01\_PTYEQ.docx

\_