

A Grade Ahead's rigorous year-round High School Math program covers 6 months of Algebra 2 concepts and 6 months of Pre-Calculus concepts. It is designed to challenge your child to a higher academic standard. Our monthly curriculum includes math concepts and real-world problems to develop strong critical thinking skills. The material also includes one pre-test and one post-test every quarter.

Each week will have an in-depth lesson (which we call Examples), homework (2 days per week), and detailed answers. In these next pages, we offer a closer look at what our examples, homework, and answers offer as well as a specific sample of each.

Student Goals

Student goals are listed at the top right of the Examples each week. These are topics that your child should understand by the end of the week.

Lesson pages are titled "Examples – HS Math," answer pages are titled "Answers – HS Math," and homework pages are simply titled "HS Math."

is & Complex Numbers		Student Goals:
S Complex Numbers Teaching Tip: The review material on this page a provided only as resource for students. Do not provided and mapping unit problems correctly due to exponent issues A. Exponent and Radical Review		I will know the definition and the four powers of the imaginary unit I will be able to complete operations that involve imaginary or complex numbers. I will be able to find the imaginary roots of a quadratic equation.
Operations with polynomials ar The rules that students have co	nd complex numbers require the corre- overed previously are given below for	ct use of exponents and radicals. students to review as needed.
Rules	Formula / Explanation	Example
Product of Powers PTY	$X_m \cdot X_u \equiv X_{m+u}$	35-32 = 3(5+2) = 37
Power of a Product PTY	(xy) ^m = x ^m y ^m	(2×3) ⁴ = 2 ⁴ ·3 ⁴
Quotient of Powers PTY	$\frac{x^m}{x^n} = x^{(m-n)}$	$\frac{2^6}{2^2} - 2^{6-2} - 2^4$
	$\left(\underline{x}\right)^{m} = \underline{x^{m}}$	$\left(\frac{3}{5}\right)^3 = \frac{3^3}{3^3}$
Power of a Quotient PTY	(y) y ^m	(0) 5
Power of a Quotient PTY Zero Exponent THM	y ^m For all real numbers b such that	123° = 1
Power of a Quotient PTY Zero Exponent THM Vegative Exponent Theorem		$(3)^{-1} = \frac{1}{7^2}$
Power of a Quotient PTY Zero Exponent THM Negative Exponent Theorem		$\begin{array}{l} (2) & 5^{2} \\ 123^{0} = 1 \\ 7^{2} = \frac{1}{7^{2}} \\ (23)^{4} = 2^{(34)} = 2^{12} \end{array}$

Teaching Tip

Teaching tips are suggestions to help you or your teacher present the topic to your child. These could include topics to review first or even an activity to do with your child.

	Here will	Do two	
etic Formu Jscriminant:	$ax^{2} + bx + c = 0$ la: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $b^{2} - 4ac$		
	If the discriminant is	there will be	
	> 0	2 real roots	
	= 0	1 real root	
	< 0	2 imaginary roots	
Example: discriminar $x^2 = 2x = 5$ $x^2 + 2x + 8$ $b^2 - 4ac =$ 2 imaginar $x = -\frac{2\pm 4}{2(1)}$ $x = -1\pm i\sqrt{2}$	Determine the type and nu. t. Then find all solutions, r $a^{8} = 0$ $2^{2} - 4(1)(8) = -28$ y roots $\frac{-28}{2} = \frac{-2 \pm i\sqrt{28}}{2} = \frac{-2 \pm 2i}{2}$	mber of solutions of the given e eal and imaginary. Find the discriminant. $\sqrt{7}$	equation using the
Example: Since the o solution giv division. Th	Find the zeros of $f(x) = 5x^{-1}$ legree of the equation is 3, ven (f(1) = 0 $\Rightarrow x = 1 \Rightarrow x^{-1}$ ten, use factoring or the qu	$-4x^{-} + 7x - 8$ given that $t(1) =$ there will be 3 roots or zeros. F -1 = 0) with polynomial division adratic formula to find the remain	Fo. Factor out the n or synthetic aining roots.
Synthetic E	Division:	Polynomial Division:	
1 <u>5</u>	-4 7 -8 5 1 8 1 8 0	$x - 1$ $5x^{3} - 4x^{2}$ $-\frac{(5x^{3} - 5x^{2})}{x}$	$\frac{e^{2} + x + 8}{2^{2} + 7x - 8}$ $\frac{21}{2^{2} + 7x}$ $\frac{e^{2} - x}{2^{2} + 7x}$
(x - 1	1)(5x ² + x + 8)		*
	1+ √-15	9 -1+1 /455	

Examples

To illustrate the topic, examples are provided to you and your child. These examples help demonstrate how to solve the problem or figure out the answer.

Each day's homework usually takes about 30 minutes to complete.

Homework

Each week, two days of homework are given to apply concepts from that week's lesson and reinforce the topic.

		Answers – HS	Math	Algebra 2: Weeks 1-24; Pr.	
	- Day 1				
1	9i [√-81 - √(-1)(81)	— 9 √-1 — 9 i]	2)	$2i\sqrt{6}\left[\sqrt{-24} - \sqrt{(-1)(24)} - 2i\sqrt{6}\right]$	
3)	$5i\sqrt{2}[\sqrt{-50} = \sqrt{(-1)}]$	(50) = 5i√2]	4)	$11i \left[\sqrt{-121} = \sqrt{(-1)(121)} = 11i\right]$	
5)	-2 [i ² = -1; (-1)(2) = -2		6)	$0 [i^3 = (i^2)(i) = (-1)(i) = -i; -i + i = 0]$	
7) 8)	 -3 [i(2i + i) = i(3i) = 3i² -2 [Use the difference 	= (3)(-1) = -3] of squares: (i + 1)(i - 1) = i ² - 1	1 = -1 - 1 = -21	
9) 10)	2i [Use the perfect sq	uare trinomial: (i + 1) ² =	i² + 2i +	+ 1 = -1 + 2i + 1 = 2i] + 1 = -1 - 2i + 1 = -2i	
For quest	tions 11-18, one point is	given for correctly facto	oring out	It the first root, and the second point is for finding the	
remaining	-1±3i√7	e given.			
11-12)	x = -1, [Gi	ven that t(-1) = 0, (x + 1) is a tai	actor of f(x) and must be factored out using either	
	synthetic or polynomia	ai long division; using si	mineuc (- division,	
	-1 1 -2	-1	8	3	
	2 1	8	0		
	Thus: (w) = (w + 1)/2w	2 + v + 9) End the room		eres by the subdrafie equation:	
	$h = \sqrt{h^2 - 4.00}$	$(1)+\sqrt{(1)^2-4/2}$	V 8 1		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$=\frac{1}{2(2)}$	=	$\frac{112\sqrt{95}}{4} = \frac{112\sqrt{95}\sqrt{11}}{4} = \frac{112\sqrt{957}\sqrt{11}}{4} =$	
	-1±3i√7				
	4				
13-14)	$x = 0, 1 \pm i \sqrt{13}$ [Start	ing by factoring out the	GCF: bi	$p(x) = x(x^2 - 2x + 14x)$; Find the roots of the quadratic	
		ь÷.Г	2 4 00	$(-2) + \sqrt{(-2)^2 - 4(1)(14)} - 2 + \sqrt{(-2)^2}$	
	by using the quadratic	equation: $x = \frac{10 \pm \sqrt{10}}{2}$	28	$\frac{1}{2} = \frac{1}{2(1)} = \frac{1}{2(1)} = \frac{1}{2} $	
	2±√52·√-1 2±3	2i√13 1 /12 ond	01		
	2	2 = 1±1,013 and	i x = 0j		
	$x = -9, \frac{7 \pm i\sqrt{3}}{2}$ [Give	en that (x + 9) is a facto	r, we kno	how there is a zero at $x + 9 = 0 \Rightarrow x = -9$; Divid	
	- 50x + 117 by x +	9 to get x ² - 7x + 13;	Because	e the remaining factor will not factor over	
	the quad	Iratic formula to solve fo	or the rea	emaining zeros; $x = \frac{-b \pm \sqrt{b^2} - 4}{b^2}$	
		7+	±√3√	-1 7++-	

Answers

Answers are provided to check your child's homework. Enter the scores into the Parent Portal to track progress and note which areas may need more work.

Radicals & Complex Numbers

Teaching Tip: The review material on this page is provided only as a resource for students. Do not go over it in class unless a student cannot solve the radical and imaginary unit problems correctly due to exponent issues.

Stı	Ident Goals:
\checkmark	I will know the definition and first four powers of the imaginary unit.
\checkmark	I will be able to complete operations that involve imaginary or complex numbers.
✓	I will be able to find the imaginary roots of a quadratic equation.

A. Exponent and Radical Review

Operations with polynomials and complex numbers require the correct use of exponents and radicals. The rules that students have covered previously are given below for students to review as needed.

Rules	Formula / Explanation	Example	
Product of Powers PTY	$\mathbf{x}^{\mathbf{m}} \cdot \mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{m} + \mathbf{n}}$	$3^5 \cdot 3^2 = 3^{(5+2)} = 3^7$	
Power of a Product PTY	$(xy)^m = x^m y^m$	$(2\times 3)^4 = 2^4 \cdot 3^4$	
Quotient of Powers PTY	$\frac{x^{m}}{x^{n}} = x^{(m-n)}$	$\frac{2^6}{2^2} = 2^{6-2} = 2^4$	
Power of a Quotient PTY	$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$	$\left(\frac{3}{5}\right)^3 = \frac{3^3}{5^3}$	
Zero Exponent THM	For all real numbers b such that $b \neq 0$, $b^0 = 1$	123 ⁰ = 1	
Negative Exponent Theorem	For all real numbers n and x such that $x \neq 0$, $x^{-n} = \frac{1}{x^n}$.	$7^{-2} = \frac{1}{7^2}$	
Power Rule	$(\mathbf{x}^m)^n = \mathbf{x}^{mn}$	$(2^3)^4 = 2^{(3 \cdot 4)} = 2^{12}$	
The Rational Exponent Theorem	For all integers m and n and for all real numbers $x > 0$, $(\frac{m}{n}) = (x^m)^n = (x^n)^m = \sqrt[n]{x^m}$	$2^{\left(\frac{3}{4}\right)} = (2^{3})^{\frac{1}{4}} = (2^{\frac{1}{4}})^{3} = \sqrt[4]{2^{3}}$	

Although exponents include radical operations, radicals have several additional rules, as well.

Taking an even-numbered root of	Will result in	Example
a positive number	positive and negative solutions	$\sqrt{x^2} = \pm x; \sqrt{9} = \pm 3;$ $\sqrt[4]{16} = \pm 2$
zero	1 solution (0)	$\sqrt{0} = 0; \sqrt[6]{0} = 0$
a negative number	no real solutions	$\sqrt{-2} = \varnothing; \sqrt[4]{-16} = \varnothing;$ $\sqrt[6]{-729} = \varnothing$

Agradeahead TA a Registered Trademark of A Grade Ahead, Inc.

B. Imaginary & Complex Numbers

The Imaginary Unit

Taking a square root of a negative number is not possible using only real numbers; however, there are some math processes that require taking the square root of a negative number. To make that happen, mathematicians use the imaginary unit, i.

 $i = \sqrt{-1}$

Even though i is not a real number, it follows the same rules as real numbers when it comes to operations (multiplication, division, addition, etc.). Simply treat it as a variable that always has the same value (like π).

The second to last example above shows how it is possible to find the powers of i using regular solving methods; however, it is useful to have the first four memorized.

Powers of i to Know	How to Find Them
i = √-1	Definition of i
i ² = -1	$(i)^2 = (\sqrt{-1})^2 = -1$
i ³ = -i	$(i)^3 = (i^2)(i) = (-1)(i) = -i$
i ⁴ = 1	$(i)^4 = (i^2)(i^2) = (-1)(-1) = 1$
Day 1 Q8-9	

Complex Numbers

By definition, a complex number is any number that involves the imaginary unit, i. The standard form of a complex number is $\mathbf{a} + \mathbf{b}\mathbf{i}$ where a and b are real numbers, and $\mathbf{b} \neq \mathbf{0}$.

With a + bi, if	the number will become	Example
a = 0	a pure imaginary number	1.7i; 12i; -2i
b = 0	a real number (not complex or imaginary at all)	12; -201; 0.5
$a \neq 0$, and $b \neq 0$	a complex number	4 + 3i; 17 – 4i; -3 + 10.8i

Complex Solutions to Quadratic Equations

Day 1 Q11-14; 19-20

Previously, when finding roots to a parabola, if the discriminant was negative, there was no real solution. Now, when the discriminant is negative, there will be two imaginary roots.

Standard Form:

Standard Form:
$$ax^2 + bx + c = 0$$
Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

~

 $b^2 - 4ac$

Discriminant:

If the discriminant is	there will be
> 0	2 real roots
= 0	1 real root
< 0	2 imaginary roots

Example: Determine the type and number of solutions of the given equation using the discriminant. Then find all solutions, real and imaginary.

$$x^{2} = -2x - 8$$

$$x^{2} + 2x + 8 = 0$$
Find the discriminant.
$$x = \frac{-2 \pm \sqrt{-28}}{2(1)} = \frac{-2 \pm i\sqrt{28}}{2} = \frac{-2 \pm 2i\sqrt{7}}{2}$$

$$x = -1 \pm i\sqrt{7}$$

Example: Find the zeros of $f(x) = 5x^3 - 4x^2 + 7x - 8$ given that f(1) = 0.

Since the degree of the equation is 3, there will be 3 roots or zeros. Factor out the solution given (f(1) = $0 \Rightarrow x = 1 \Rightarrow x - 1 = 0$) with polynomial division or synthetic division. Then, use factoring or the quadratic formula to find the remaining roots.

Synthetic Division:
1
$$\begin{array}{c|ccccc} 5 & -4 & 7 & | & -8 \\ \hline 5 & 5 & 1 & 8 & | & 0 \end{array}$$

 $f(x) = (x-1)(5x^2 + x + 8)$

 $x = \frac{-1 \pm \sqrt{1^2 - 4(5)(8)}}{2(5)} = \frac{-1 \pm \sqrt{-159}}{10} = \frac{-1 \pm i\sqrt{159}}{10}$

 $x = 1, \frac{-1 \pm i\sqrt{159}}{10}$

EXAMPLES_GRDHS_W14_A2.docx

Agradeahead_{TM} is a Registered Trademark of A Grade Ahead, Inc.

3

 $2i\sqrt{6} \left[\sqrt{-24} = \sqrt{(-1)(24)} = 2i\sqrt{6}\right]$

11i $\left[\sqrt{-121} = \sqrt{(-1)(121)} = 11i\right]$

6) 0 $[i^3 = (i^2)(i) = (-1)(i) = -i; -i + i = 0]$

Week: 14 - Day 1

1) 9i
$$[\sqrt{-81} = \sqrt{(-1)(81)} = 9\sqrt{-1} = 9i$$
] 2)

3)
$$5i\sqrt{2} \left[\sqrt{-50} = \sqrt{(-1)(50)} = 5i\sqrt{2}\right]$$

- -2 $[i^2 = -1; (-1)(2) = -2]$ 5)
- $-3 [i(2i + i) = i(3i) = 3i^{2} = (3)(-1) = -3]$ 7)

8)

-2 [Use the difference of squares: $(i + 1)(i - 1) = i^2 - 1 = -1 - 1 = -2$] 2i [Use the perfect square trinomial: $(i + 1)^2 = i^2 - 2i + 1 = -1 - 2i + 1 = -2i$] -2i [Use the perfect square trinomial: $(i - 1)^2 = i^2 - 2i + 1 = -1 - 2i + 1 = -2i$] 9)

10)

For questions 11-18, one point is given for correctly factoring out the first root, and the second point is for finding the remaining two roots. Examples are given. 1

4)

11-12)
$$x = -1, \frac{-1 \pm 31\sqrt{7}}{4}$$
 [Given that f(-1) = 0, (x + 1) is a factor of f(x) and must be factored out using either

synthetic or polynomial long division; using synthetic division,

Thus, $f(x) = (x + 1)(2x^2 + x + 8)$; find the remaining zeros by the quadratic equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(1) \pm \sqrt{(1)^2 - 4(2)(8)}}{2(2)} = \frac{-1 \pm \sqrt{-63}}{4} = \frac{-1 \pm \sqrt{63}\sqrt{-1}}{4} = \frac{-1 \pm \sqrt{9 \cdot 7}\sqrt{-1}}{4} = \frac{-1 \pm \sqrt{9 \cdot 7}$$

13-14)
$$x = 0, 1 \pm i\sqrt{13}$$
 [Starting by factoring out the GCF; $b(x) = x(x^2 - 2x + 14x)$; Find the roots of the quadratic

by using the quadratic equation:
$$\mathbf{x} = \frac{\mathbf{b} \pm \sqrt{\mathbf{b}} - 4 \mathbf{ac}}{2 \mathbf{a}} = \frac{\mathbf{c} (-2) \pm \sqrt{(-2)^2 - 4(1)(14)}}{2(1)} = \frac{2 \pm \sqrt{-52}}{2}$$

$$\frac{2\pm\sqrt{52}\cdot\sqrt{-1}}{2} = \frac{2\pm2i\sqrt{13}}{2} = 1\pm i\sqrt{13} \text{ and } x = 0]$$

x = -9, $\frac{7 \pm i\sqrt{3}}{2}$ [Given that (x + 9) is a factor, we know there is a zero at x + 9 = 0 \Rightarrow x = -9; Divide x³ + 15-16) $2x^2 - 50x + 117$ by x + 9 to get $x^2 - 7x + 13$; Because the remaining factor will not factor over the integers, we must use the quadratic formula to solve for the remaining zeros; $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} =$

$$\frac{-(-7)\pm\sqrt{(-7)^2-4(1)(13)}}{2(1)} = \frac{7\pm\sqrt{-3}}{2} = \frac{7\pm\sqrt{3}\cdot\sqrt{-1}}{2} = \frac{7\pm\sqrt{3}}{2}$$

17-18)
$$x = 1, \frac{7}{2}, 3$$
 [Given that $(x - 1)$ is a factor, we know there is a zero at $x - 1 = 0$;
 $x = 1$; Divide $2x^3 - 15x^2 + 34x - 21$ by $x - 1$ to get $2x^2 - 13x + 21$, then $2x^2 - 13x + 21 = (2x - 7)(x - 3)$; Solving for zeros, $2x - 7 = 0$; $x = \frac{7}{2}$ and $x - 3 = 0 \implies x = 3$]

For questions 19-21, students could give the function provided as an answer or any variation where all parts of the equation are multiplied by the same constant. Examples are given.

19) $f(x) = x^3 - 5x^2 + 11x - 15$ [Given f(1 - 2i) = 0, we know that f(1 + 2i) is also a root; $f(x) = (x - (1 - 2i))(x - (1 + 2i))(x - 3) = (x - 1 + 2i)(x - 1 - 2i)(x - 3) = (x^2 - 2x + 5)(x - 3)(x - 3) = (x^2 - 2x + 5)(x - 3)(x - 5)(x - 5)(x$ $x^3 - 5x^2 + 11x - 15$; the general solution is $f(x) = c(x^3 - 5x^2 + 11x - 15)$ where c is a non-zero constant.]

Answers GRDHS W14 A2 S.docx

Agradeahead, is a Registered Trademark of A Grade Ahead, Inc.

- 20) $h(x) = x^4 + 3x^3 + x^2 + 3x$ [Given h(i) = 0, we know that h(-i) is also a root; $h(x) = x(x - i)(x + i)(x + 3) = x^4 + 3x^3 + x^2 + 3x$; the general solution is $h(x) = c(x^4 + 3x^3 + x^2 + 3x)$ where c is a non-zero constant.]
- 21) $f(x) = x^3 11x^2 + 33x 35$ [Given that f(2 i) = 0, we know that f(2 + i) is also a root. $f(x) = (x - 7)(x - (2 - i))(x - (2 + i)); f(x) = (x - 7)(x^2 - 4x + 5); f(x) = x^3 - 11x^2 + 33x - 35;$ The general solution is $f(x) = c(x^3 - 11x^2 + 33x - 35)$ where c is a non-zero constant.]

